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Announcements

@ Midterm grading is underway. Solutions are available, | expect grades to be
released this weekend or early next week.
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@ Midterm grading is underway. Solutions are available, | expect grades to be
released this weekend or early next week.

@ Average for true or false was 76% (3.8 out of 5 correct), ~ 33% of students
answered 1(d) correctly.

@ Average for Problem 2 was ~ 82%s despite 68% giving the wrong answer
for part (b).

@ Average for Problem 4 was ~ 60% despite only 3% of students giving the
correct answer for part (b) ~17% recieved > 38/40 for the final problem.

@ No homework due this week = small adjustment to grading rubric.
Homework now accounts for 22% of grade instead of 25%. Missing 3% has
been added onto final exam.
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Homogeneous Equations

Definition
An n-th order linear differential equation

n—1)

YO () + @ (YD (@) 4 -+ an (1) (0) + ao(r)y(0) = g(1) (1)

is homogeneous if g(¢) = 0 for all values of t.
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Homogeneous Equations

Definition
An n-th order linear differential equation
YO + ana (YD) + -+ @ (1) (1) + ao(1)y() = g(2) (1)

is homogeneous if g(r) = 0 for all values of t. If g(r) # 0 for some value of r we
say that (1) is inhomogeneous.

Example

(@) The equation y”(z) + 2y'(¢) + 4y(z) = 0 is homogeneous.
(b) The equation y”(z) + 2y'(¢) + 4y(z) = sin(¢z) inhomogeneous.
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Particular Solutions |

Definition
Consider an n-th order inhomogeneous ODE

YO (1) + an_g (DY (0) + -+ ar(6)y' (8) + ao(1)y(t) = g(7) (2)

where ay, ... ,a,—1, and g(t) are continuous functions defined on an interval I.
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Definition
Consider an n-th order inhomogeneous ODE
YO () + @ (YD (@) + -+ an (1) (1) + ao(1)y(r) = g(2) 2)

where ay, ... ,a,—1, and g(t) are continuous functions defined on an interval I.
@ A particular solution to (2) is any solution ¢: I — R to the equation (2).
@ A complementary solution to (2) is a solution to the corresponding
homogeneous differential equation

YO ) + ana ("D (@) + -+ ar (1) (1) + ao(1)y(r) = 0.

Theorem

Suppose y, (1) is a fixed particular solution to the ODE (2). If y(t) is any
solution to (2) then there exists a complementary solution y.(t) such that
Ysol (1) = yp(2) + ye(2).
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Example
Consider the inhomogeneous first order linear differential equation

Y (6) +2y(r) = €. (3)
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Example
Consider the inhomogeneous first order linear differential equation

Y (6) +2y(r) = €. (3)

@ Show that y,(r) = e’ is a particular solution to equation (3).
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Particular Solutions Il

Example
Consider the inhomogeneous first order linear differential equation

Y (6) +2y(r) = €. (3)

@ Show thaty,(f) = %e’ is a particular solution to equation (3).

@ Using the method of integrating factors, show that if y,(#) is a solution to (3)
then there exists a complementary solution y.(z) such that

1

y(t) = ge’ + ye(1).
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Particular Solutions Il

Example
Consider the inhomogeneous first order linear differential equation

Y (6) +2y(r) = €. (3)

@ Show thaty,(f) = %e’ is a particular solution to equation (3).

@ Using the method of integrating factors, show that if y,(#) is a solution to (3)
then there exists a complementary solution y.(z) such that

1

y(t) = ge’ + ye(1).

@ The above example says that y'(¢) + 2y(¢) = ¢' admits a general solution of
the form
y(#) = yp(t) + yu(t)

where y, () = 1¢’ and y; (1) is a general solution of y/ (1) + 2y() = 0.
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Second Order Inhomogeneous Equation

@ We've seen how to construct general solutions 2nd order homogeneous
ODE’s of the form

ay" (1) +by'(t) + cy(t) =0 (4)
where a # 0, b, and ¢ are constants.
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Second Order Inhomogeneous Equation

@ We've seen how to construct general solutions 2nd order homogeneous
ODE’s of the form
ay”(t) + by'(t) + cy(1) = 0 (4)

where a # 0, b, and c are constants.
@ Given a particular solution y,(¢) to an inhomogeneous equation
ay” (1) + by () + cy(r) = f(1)
we can construct a general solution by writting y(z) = y,(f) + yu() where

yi(t) is a general solution to the homogeneous equation (4).

Question
Given an inhomogeneous ODE's of the form

ay”(t) + by (1) + cy(t) = f(1) ()

is there a method for constructing a particular solution to (5)?
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Variation of Parameters

Theorem

Suppose a # 0, b, and c are constant we are given an inhomogeneous ODE
ay” (1) + by (1) + ey(r) = f(1). (6)

and let y,(r) and y,(t) be linearly independent solutions to the corresponding
homogeneous equation.

@ Ifv(¢) and v,(z) are functions satisfying the system of equations

V(W (1) + Y2 1)V (1) = 0
Vi (O () + ¥y ()va(1) = £(0)/a

theny,(t) = vi(t)y1(r) + v2(t)y2(2) gives a particular solution to the (6).

Example

Using the method of variation of parameters find a particular solution to
y"” + 9y = 1. Using your answer give a general solution to y” + 9y = 1.
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